HeaterSIM

Fired Heater Simulation Technology

CONTENTS

- **1. GENERAL INFORMATION**
- **2. APPLICABLE HEATERS**
- 3. MAIN DATA INPUT SECTIONS
- 4. SETTING UP THE FIRED HEATER MODEL
- 5. DATA ENTRY PHILOSOPHY
- 6. PROCESS DATA
- 7. RADIANT SECTION
- 8. CONVECTION SECTION
- 9. **STACK**
- 10. AIR PRE-HEATER (APH)
- 11. FUEL DATA

1. GENERAL INFORMATION

Assumed User understanding & skills

This document is based on the assumption that the reader/user of the program has a basic level understanding of the sections and general components that comprise a fired heater. This document is not intended to train or instruct the reader on the design philosophies or recommendations.

Experience Rating

Security & Standards

2. APPLICABLE HEATERS

Please see the general list below of applicable heater types and configurations that can be modelled within our program:

Types

Include, but not limited, to:

- API 560 Heater
- Bitumen Heater
- Charge Heater
- Column Reboiler Heater
- Crude Heater
- Crude Oil Heater
 Debutanizer Reboiler Heater
- Direct Fired Heater
- Dowtherm ® Heater
- Feed Heater
- Fractionator Reboiler Heater
- Glycol Heater
- HDS Reactor Heater
- Heat Medium Heater
- High Temperature Gas Heater
- Hot Oil Heater
- Heat Transfer Fluid Heater
- Large Vegetable Oil Heater
- LPG Cavern Storage Off Loading Heater
- Oxygen Heater
- Phenol Heater
- Pipeline Heater
- Platformer Heater
- Propane Storage Heating System
- Propane Vaporizer Heater
- Reactor Charge Heater
- Reactor Feed Heater
- Reboiler Heater
- Refinery Asphalt Heater
- Refinery Heater
- Reformer Heater
- Regeneration Gas Heater
- Splitter Reboiler Heater
- Stabilizer Reboiler Heater
- Steam Superheater
- Still Reboiler Heater
- Stripper Reboiler Heater
- Thermal Fluid Heater
- Thermal Liquid Heater
- Thermal Oil Heater
- Therminol ® Heater
- Tower Feed Heater
- Unifier Charge Heater
- Vacuum Heater
- Waste Heat Recovery Heater

Configurations

Include, but not limited, to:

- Vertical Cylindrical (Vertical Coils- Single Fired)
- Vertical Cylindrical (Vertical Coils Double Fired)
- Vertical Cylindrical (Helical Coil)
- Multi-Radiant Vertical Cylindrical Heaters
- Cabin / Box Heaters (Horizontal Coils Single Fired)
- Cabin / Box Heaters (Horizontal Coils Double Fired)
- Cabin / Box Heaters (Vertical Coils Single Fired)
- Cabin / Box Heaters (Vertical Coils Double Fired)
- Multi-Convection Box Fired Heaters
- WHRU / Convection Only Heaters

3. MAIN DATA INPUT SECTIONS - Fired Heater Model

AIR PRE-HEATER (APH)

Input data required within: - Required Air Outlet Temperature

4. SETTING UP THE FIRED HEATER MODEL

OPTION 1: DESIGN MODE (Design Wizard Tool)

OPTION 2: MANUAL MODE (Rating Mode)

5. DATA ENTRY PHILOSOPHY

The program is entirely flexible to enter data in any order you wish. Users who are familiar with the program will develop their own personal preferences and styles when entering data and setting up models.

However, for beginner users, when first setting up a model, the ordered steps below is a solid approach:

6. PROCESS DATA

PROCESS STREAMS			Options 🔻	CONTINUE	cancel
Process No.		1			
Process Name		Therminol XP	\sim		
Mass flow rate * use per hour	lb/s	88.2			G
Duty *	MMBTU/hr	32.675			0
INLET CONDITIONS					
Temperature (IN) *	°F	212			
Pressure (IN) * abs./gauge	psi a	108.8			
OUTLET CONDITIONS					
Temperature (OUT) *	°F	392			
Pressure (OUT) * abs./gauge	psi a	50.8			
Fouling Factor *	hr ft² F/BTU	0			
Coking Thickness *	inch	0			
Process Location		Rad. & Conv. Sections	~		
General Flow Direction [?]		Conv. To Rad.	~		
Run Basis		Fixed Inlet	~		

- 6.1. Process Name: newly created Fluids will be listed under this option
- 6.2. **Duty:** A numeric value must be entered for this field. However, if a value is specified within the Radiant Section where this process is located, the duty value will be ignored and calculations will proceed until convergence is achieved for the specified firing rate.
- 6.3. **Fouling Factor:** this value represents the heat resistance of the fluid at the film within tubes. The fouling factor will impact the inner film temperature, not the pressure drop within the coils.
- 6.4. **Coking thickness:** This will impact the pressure drop of the flowing process stram within the coils. This value will not impact the tube or film fluid temperature.
- 6.5. **Process location:** This field must be specified on the basis of where the process is generally located (please also see information on the 'General Flow Direction').

General Flow Direction:

6.6. Run Basis: this allows you to specify how the simulation will be carried out.

- a) **Fixed Inlet:** this is our recommended setting. The program will respect the specified inlet temperature and pressure, performing the necessary calculations until convergence is achieved to match the specified duty, or specified firing rate within the radiant section where the process is located.
- b) **Fixed Outlet:** with this option, the program will try to match the specified outlet temperature and pressure.

OPTIONS

9

HeaterSIM | Technology Support General User Guide

7. RADIANT SECTION

Dimensions

RADIANT CELL 1		Options •	CONTINUE	cancel
Dimensions Firing Refractory	Coils		Advan	ced Options
Firebox Dimensions				
Radiant Cell	1			
Radiant Type	Vertical Cylindrical	~		
Auto. calc. dimensions	Active	~		
Diameter * Ft	Auto			
Length * Ft	Auto		e	and the second se
Height * Ft	Auto			
Flue Exit Width * Ft	6.499		ITT	
Flue Exit Length * Ft	10.869			-

Radiant Type: select the type of radiant section you require

- a) Vertical Cylindrical
- b) Cabin
- c) Box

Note: Cabin and Box options are physically the same, however the term 'Cabin' will denote that the tubes are horizontal, whilst the term 'Box' typically indicate that the tubes will be vertical.

7.1. **Auto Calc. Dimensions:** When this option is ACTIVE, the program will automatically calculate the main dimensions of the radiant section, such as width, length and height. When this option is set as 'NOT USED', the user is able to manually the values for radiant dimensions.

RADIANT SECTION

Firing

RADIANT C	ELL 1			Options 🔻	CONTINUE cancel
Dimensions	Firing	Refractory Coils			Advanced Option
Firing Cond	ditions				
Radiant Cell			1		
Fuel No.			Fuel No. 1	~	1.8
Conv. Sect Flu	e Flows T	o	Conv. Box 1	~	1
Draft Type			Natural	~	
Air Inlet			Ambient	~	ALL R
Firing Rate *		MMBTU/hr			- 1965
Heat loss * (typically 1.5%)		%	1.5		
No. Burners			Auto	~	
Excess Air *		%	20		
Flue Recirc. to	burners	%	0	\checkmark	
Gas Emissiv. B	asis		HeaterSIM Standard	✓ k	

- 7.2. Fuel No.: specify which fuel will be used within this particular Radiant Section
- 7.3. **Conv. Sect Flue Flow To:** specify where the flue gas from this Radiant Section will flow to. For most heaters, this will simply be the Convection Section. However, for complex heaters with multiple Radiant and Convection sections, this option provides the ability to specify the flue gas routing.
- 7.4. **Draft type:** Specify the draft flow type. In cases where an Air Pre-heater is required, please ensure that this option is set to 'Forced'.
- 7.5. Air Inlet: Specify the source of the air to be used for combustion within this Radiant Section. In cases where an Air Pre-heater (APH) is required, please ensure that 'APH' is selected instead of 'Ambient'.
- 7.6. **Firing Rate:** If this value is specified, the program will attempt to converge to satisfy this value and the process duty will be calculated consequentially (the duty values specified for any process streams located within this section will be ignored).
- 7.7. Heat Loss: This value is typically 1.5% for heaters without APH, and 2.5% for heaters with APH.
- 7.8. **Flue Recirc. To Burners:** this value represents the percentage of the flue gas created from combustion, to be recirculated and mixed with the combustion air.
- 7.9. **Gas Emissivity Basis**: the flue gas emissivity is calculated internally within the program. This option allows for the basis of the calculation to be modified as described.

RADIANT SECTION

Refractorv

RADIANT CELL 1				
			Options 🔻	CONTINUE cancel
Dimensions Firing	Refractory	Coils		Advanced Options
Refractory Insulat	ion			
Radiant Cell		1		
Refractory Design Mod	de	Automatic	~	
FLOOR				
Floor Hot-Face Materia	al	MW Castable	~	3
Floor Hot-Face Thickne	ess * incl	2.95		
Floor Back-Up Materia	I	ULW Castable	~	
Floor Back-Up Thickne	ss * incł	5.91		
WALL				
Wall Hot-Face Materia	I	Fibre (High Density)	~	
Wall Hot-Face Thicknes	ss * inch	2.95		
Wall Back-Up Material		None	~	
Wall Back-Up Thicknes	s* inch	0		

Other input areas are available upon scrolling within the program

7.10. **Refractory Design Mode:** When set to 'Automatic', the program will automatically select the refractory material and calculate the necessary thicknesses in order to achieve the specified casing temperature conditions.

In 'Manual' mode, you're able to specify the material type and specify the thicknesses of each section as you wish.

Note:

- 1) The program uses the following abbreviated names to denote different material types:
 - a. HW Castable = Heavy Weight Castable
 - b. MW Castable = Medium Weight Castable
 - c. LW Castable = Light Weight Castable
 - d. ULW Castable = Ultra
 - e. Fibre (High Density) = Fibre Blanket or Module (@ 128 kg/m³ or 8 lb/ft³)
 - f. Fibre (Low Density) = Fibre Blanket or Module (@ 96 kg/m³ or 6 lb/ft³)

RADIANT SECTION

Coils

RADIANT CELL 1		Op	otions 🔻	CONTINUE cancel		
Dimensions Firing Refractor	y Coils			Advanced Options		
Coil Arrangement		More Options Add Coil Delete Coil				
Coil Section		Coil Section 1				
Process Name		Process 1: Therminol XP	~			
Tube OD <u>edit list</u>	inch	141.3mm OD / 5 inch NB	~	The ability to Add/Remove coil sections within the specific radiant		
Effective Length *	Ft	33.084		section.		
Straight Length *	Ft	31.775		This option is useful if you require different types of tubes within the		
Tube Wall Thk edit list	inch	Sch 40	~	radiant section.		
Tube Spacing <u>edit list</u>	inch	SR	~			
Distance to Wall <u>edit list</u>	inch	Auto	\checkmark			
No. Tubes *		52				
No. Passes *		2				
Tube Material		Carbon Steel	~			
Orientation		Vertical	~			
Single or Double Fired		Single	~			
Location		Wall	~			
Inlet Location		Тор	~			

7.11. **Process Name:** All the Process Streams that you have created will be listed and available for selection in this dropdown, thereby specifying the process fluid running within the specific coil section

Note: you're able to specify different process stream coils within a single radiant section. In such cases, only one process fluid will be the basis of convergence in accordance with its specified duty in the PROCESS SECTION.

7.12. **Distance to Wall:** Selecting 'Auto' will mean the program will consider the tube to be spaced at 1.5 x their Nominal Tube diameter (from centre of the tube to the wall)

Note: Process flow order will always be from "Coil Section n " TO "Coil Section n+1 "

- 7.13. **Single or Double Fired:** This specifies firing regime that a particular coil section will experience within the radiant section. Tubes within a Coil Section can be either 'Single Fired' or 'Double Fired', as defined below:
 - a) Single Fired whereby radiation from the flames is directly received by 1 side of the tubes
 - b) Double Fired where radiation from the flames is received by both sides of the tubes

Horizontal tubes being single fired

Horizontal tubes being double fired

7.14. Additional Options

RADIANT CELL 1		Options CONTINUE cancel
Dimensions Firing Refractory Coils		Advanced Options
Additional Options		More Options Add Coil Delete Coil
Coil Section	Coil Section 1	
Tube conductivity (opti BTU/ft F , C		
Tube emissivity (optional)		These Additional Options
Fouling factor (optional)		can be accessed by clicking this button
Coking thickness (optional) inch		
Bend K Loss Factor * inch	1.5	
Tube Roughness (optional)		

The following options can be left as blank, since they will be internally calculated by the program:

- 7.15. **Tube conductivity:** if blank, will be internally calculated by program
- 7.16. Tube Emissivity: if blank, will be internally calculated by program
- 7.17. Fouling factor: if blank, zero value or the value specified in the Process Section will be considered
- 7.18. Coking Thickness: if blank, zero value or the value specified in the Process Section will be considered
- 7.19. Bend K Loss factor: Default value is pre-populated, but can be edited as required. Value entry is required for this field
- 7.20. **Tube Roughness:** if blank, a standard reference value will be used

7.21. Advanced Options

RADIANT CELL 1		Options •	CONTINUE cancel
Dimensions Firing Refractory	Coils		Advanced Options
Advanced Options Radiant Cell		1	
Rad. Exchange Factor *			These Advanced Options can be accessed by clicking this button
Flux Fl Factor *			
Flux Ft Factor *			

All the items within this section are optional and will be internally calculated by the program if left blank.

Note:

The Radiant Exchange Factor relates to the effectiveness of radiant heat transfer exchange within the Radiant Section. The program will calculate this value using rigorous calculation methods, however, specifying a value for this item will override the calculated value.

The Fcir, Fl and Ft factors are in relation to factors used within the Maximum Tube Temperature calculation method as described with API 530 Standard. These values are internally calculated by the program, however, specifying a value for this item will override the calculated value.

8. CONVECTION SECTION

Dimensions

CONVECTION BOX 1				Options 🔻	CONTINUE	cancel
Dimensions Refractory	Misc.	Coils				
Convection Dimension	ons					
Convection Section		1				
Auto. calc. dimensions		Active	~			
Width *	Ft	Auto				T
Height *	Ft	Auto		<u>I</u>		
Effective Length *	Ft	19.144				
Straight Length *	Ft	Auto				
Flue Flow To		Stack No. 1	~			
Shock Row Radiation		Direct From Flames	~			

8.1. **Auto Calc. Dimensions**: When this option is ACTIVE, the program will automatically calculate the main dimensions of the radiant section, such as width, straight length and height. When this option is set as 'NOT USED', the user is able to manually the values for radiant dimensions.

Notice that you'll still need to specify the 'Effective Length'

- 8.2. Flue Flow To: you'll need to specify where the flue gas flows is routed once it has exited the Convection Section. Usually, the flue gas will exit the Convection Section and then flow to the Stack. However, in some stances, you may not want it flowing to the Stack. For example, with APH specified, the flue gas will flow to the APH.
- 8.3. **Shock Row Radiation:** The 'Shock Rows' refer to the three lowest rows in the convection section, which will usually be designed with bare tubes only. In older heaters, the lowest two rows were considered as the Shock Rows.

This option specifies whether the 'Shock Rows' receive radiation directly from the flames within the radiant section. This will be true for most heaters, but in some cases where the convection section is not mounted directly on the radiant, the radiation will not be received directly.

CONVECTION SECTION

Refractory **CONVECTION BOX 1** CONTINUE Options cancel Dimensions Refractory Misc. Coils **Refractory Insulation Convection Section** 1 **Refractory Design Mode** Automatic SIDE WALLS Con. Wall Hot-Face Material LW Castable Con. Wall Hot-Face Thickness * inch 2.95 Con. Wall Back-Up Material **ULW** Castable Con. Wall Back-Up Thickness * 2.95 inch

8.4. **Refractory Design Mode:** When set to 'Automatic', the program will automatically select the refractory material and calculate the necessary thicknesses in order to achieve the specified casing temperature conditions.

In 'Manual' mode, you're able to specify the material type and specify the thicknesses of each section as you wish.

Note:

- 1) The program uses the following abbreviated names to denote different material types:
 - a. HW Castable = Heavy Weight Castable
 - b. MW Castable = Medium Weight Castable
 - c. LW Castable = Light Weight Castable
 - d. ULW Castable = Ultra
 - e. Fibre (High Density) = Fibre Blanket or Module (@ 128 kg/m³ or 8 lb/ft³)
 - f. Fibre (Low Density) = Fibre Blanket or Module (@ 96 kg/m³ or 6 lb/ft³)

CONVECTION SECTION

Miscellaneous

CONVECTION BOX 1			Options 🔻	CONTINUE	cancel
Dimensions Refractory	Misc.	Coils			
Miscellaneous					
Convection Section		1			
Additional No. Rows *		2			L
No. Sootblower Lanes *		0			T
Sootblower lane height *	Ft	0			
Additional Height *	Ft	4.593			

Note: these inputs fields generally relate to the additional height to be considered in the overall convection height. The program will calculate the overall height required, unless you have inputted a specific value for the convection height in the Dimensions section.

However, if the specific height that you have specified is conflicts with the data specified in this section, the program will ignore your specified value for Convection Height and internally calculate a suitable value.

The height of the Convection Section is important for the flue gas pressure profile calculations within the heater.

- 8.5. Additional No. Rows: this refers to the additional spare rows located at the top that are usually specified on new equipment supply projects.
- 8.6. **No. Sootblower Lanes**: For some Fired Heaters that utilise fuel oil, Sootblowers are often installed to clean the soot deposited on the convection coils during operation. Each lane, will increase the height of the convection section.
- 8.7. Sootblower lane height: this value is the height of each Sootblower lane (typically 0.75 m / 2.5 ft).
- 8.8. Additional Height: you can also specify additional height required for other purposes (e.g. to accommodate inspection doors).

HeaterSIM

٦

Fired Heater Engineering & Technology https://www.heatersim.com

CONVECTION SECTION These options Add/Remove entire Convection						
Coils	Sectio	ns				
CONVECTION BOX 1		C	Deptions CONTINUE cancel			
Dimensions Refractory Misc. Coils						
Convection Coils		Note: Coil sections	More Options Add Coil Delete Coil			
Coil Section	Coil Section 1	Coil Section 2	Coil Section 3			
Process Name	Process 1: Therminol XP 🛛 🗸	Process 1: Therminol XP 🛛 🗸	Process 1: Therminol XP 🗸			
Flow Order * [?]	3	2	1			
Tube OD <u>edit</u> in	ch 141.3mm OD / 5 inch NB 🗸	141.3mm OD / 5 inch NB v	These options Add/Remove			
Tube Wall Thk <u>edit</u> in	ch Sch 40 ~	Sch 40 V	Coil sections to the			
No. Tubes Per Row *	8	8	convection section.			
No. Passes *	2	2	2			
Tube Material	Carbon Steel ~	Carbon Steel ~	Carbon Steel ~			
No. Rows *	3	2	3			
Horiz. Tube Spacing (Horiz) <u>edit</u> in	ch SR ~	SR ~	SR ~			
Vert. Row Spacing (Vert) <u>edit</u> in	ch Auto ~	Auto	Auto ~			
Vert. Row Spacing (Vert) <u>edit</u> in	ch Auto ~	Auto	Auto ~			
Flow Direction	Counter-current ~	Counter-current ~	Counter-current ~			
Coil Alignment	Staggered ~	Staggered ~	Staggered ~			
Corbel Width	1/2 Tube Space V	1/2 Tube Space V	1/2 Tube Space V			
Fin Type	None ~	Solid	Solid ~			
Fin Material	None	Carbon Steel ~	Carbon Steel ~			
Fin Height * in	ch	0.75	1			
Fin Thickness * in	ch	0.05	0.05			
Serrated Fin Wn *						
Fin Density * fir	ns/ft	48	60			

8.9. **Process Name:** All the Process Streams that you have created will be listed and available for selection in this dropdown, thereby specifying the process fluid running within the specific coil section

Note: you're able to specify different process stream coils within a single radiant section. In such cases, only one process fluid will be the basis of convergence in accordance with its specified duty in the PROCESS SECTION.

8.10. Dropdown selections

(Tube OD, Tube Wall Thk, Tube Material and Tube Spacing)

Note that the mentioned dropdown items each have an <u>edit</u> button nearby. In case a particular option that you require is not available within the pre-defined list, the <u>edit</u> button will allow you to add items to the dropdown list

The Flow Ordering

Convection Coils			
Coil Section	Coil Section 1	Coil Section 2	Coil Section 3
Flow Order * [?]	3	2	1

8.11. Flow Order: this refers to the general sequence order of the process between each specified coil section. Please see the diagram below for explanation

8.12. Vertical Row Spacing: If you select 'Auto' the program will automatically consider an equaliteral triangular pitch spacing basis and thereby calculate the vertical height between tubes in adjancent rows.

8.13. **Flow Direction:** this option defines the general flow direction of the process fluid in relation to the flue gas flowing over the coils. In most cases, this option will be 'COUNTER-CURRENT' however, in some heaters, you may wish to define the process flow with a general flow CO-CURRENT with the flue gas.

Regeneration Gas heaters with low process inlet temperatures are sometimes designed with cocurrent flows in order to raise tube temperatures in the convection section and minimise potential for flue gas condensation.

8.14. **Coil Alignment:** Usually, this will be staggered. However, in very rare circumstances, you may wish to use an in-line arrangement.

Staggered Arrangement

In Line Arrangement

- 8.15. Fin Type: this dropdown option has four different options:
 - None (bare tube)
 - Solid
 - Serrated
 - Studs

SERRATED FINS

STUDS

9. STACK

			CONTINUE	cancel
Design Refractory K Lo	osses			
Design				
Stack No.		1		
Design Mode		Automatic ~	1	7
Stack Diameter *	Ft	3.839		
Stack Height *	Ft	49.213	-	
Cone Diameter *	Ft	3.839		
Minimum Height * (height of stack itself only)	Ft	49.213		
Flue Gas Exit Velocity *	mph	14.5	100 C	
Draft @ Arch *	inchH2Og	-0.1		
Heater Elevation * (elevation from sea level)	Ft	32.808		
Ambient Temperature *	°F	95		-0
Overdesign Margin *	%	120		

9.1. **Design Mode:** when 'Automatic' is selected, the program will calculated the height and diameter of the Stack required to satisfy the draft specified at the arch.

If the 'Manual' is selected, the calculation will be performed based on the diameter and height values that you'll need to specify. Within the results, there will notifications on whether the calculated draft created is sufficient to overcome the overall pressure losses of the flue gas.

- 9.2. **Cone Diameter:** this is the diameter at the stack exit, which may be smaller than the main stack body in order to increase the exit velocity
- 9.3. **Minimum Height:** this value refers to the height of the stack itself (not the exit height from grade). This value is used when the calculation is in 'Automatic' mode, and will respect the minimum height specified.
- 9.4. **Draft at Arch:** this value is used by the Automatic Calculator when it deduces a solution that satisfies this value.
- 9.5. **Ambient Temperature:** This is the design ambient temperature that will be considered for the stack performance calculations (this value is not used for combustion calculations).
- 9.6. **Overdesign Margin:** will be used by the Automatic calculator to produce a an appropriate solution.

10. AIR PRE-HEATER (APH)

		CONTINUE cancel
АРН	1	
Activity	Not Used 🗸	
Outlet Air Temp. req'd °F	302	
Flue Flow To	Stack No. 1 ~	

- 10.1. Activity: you'll need to select 'Active' to allow the program to consider an Air Pre-heater
- 10.2. **Outlet Air Temperature:** specify the air temperature to enter the burners and be used for combustion.

The program will carry out a heat balance of the APH on the basis of attepting to achieve this specified air temperature. In case the hot flue gas entering, doesn't have sufficient energy to achieve the specified air temperature, a note will be clearly visible in the results to indicate the non-feasibility of the APH performance.

10.3. Flue Flow To: similar to Convection Section, you'll need to specify where the flue gas will flow to once it exits the APH.

IMPORTANT:

To run the simulation properly with an APH, make sure you also do the following:

- In the Convection section (or very unusually, the Radiant Section) please specify the APH as the 'Flue Flow To' destination.
- In the appropriate Radiant section, please specify the APH as the Air Source Inlet (within the Firing section options)

11. FUEL DATA

11.1. Gaseous Fuels

eous rueis				These options Add/Remove/Mix Fuels
In case of gaseous fuels, complete as follows:			Options CONTINUE cancel	
Fuel No.		1		Delete Fuel
DataTitleRow		Composition Mol%		Mix Fuels
Fuel Type		Gas Fuel 🗸		
Methane	Mol%	100		
Ethane	Mol%	0		- And
Propane	Mol%	0		
Butane	Mol%	0		
Pentane	Mol%	0		
Hexane	Mol%	0		
Ethylene	Mol%	0	×	
Propylene	Mol%	0	0	

Fuel Type: select either 'Fuel Gas' or 'Fuel Oil'. Depending on your selection, you'll need to enter data for the related fields.

11.2. Liquid Fuels

In case of liquid fuel, complete as follows:				Options 🔻	CONTINUE	cancel
Fuel Oil LHV	BTU/Ib	17792.7				
C/H Ratio	(wt:wt)	8.16				
ΑΡΙ						
Specific Gravity (@15C/60F)						
Sulphur	%wt	1.6				
Water	%wt					
Ash	%wt					

12. FURTHER ASSISTANCE

For any additional information or assistance not covered within this document, please don't hesitate to contact us directly:

Email: contact@heatersim.com

Website: www.heatersim.com

